
Enumeration Algorithms for Restricted and
Unrestricted Compositions and Words

Daniel R. Page
Department of Computer Science

University of Manitoba
Winnipeg, Manitoba, Canada

April 8, 2011
Last Updated: May 20, 2011

Abstract

An overview of many of the major results in enumeration algo-
rithms for Combinatorial Compositions can be found in this survey
paper. The focus of this survey paper is on unrestricted composi-
tions, bounded compositions, and future research in restricted com-
positions. The paper is concerned with generating these combinato-
rial objects, not counting the number of element under a composition.
This paper includes a brief history of the problem, and theoretical con-
nections found between combinatorial Gray-Codes, Integer Partitions,
and common techniques established over the years. Lower-bound and
upper-bound time and space complexities for these class of algorithms
are covered where permitted. Primary focus will be given to sequen-
tial algorithms but in certain contexts concurrent and parallel solu-
tions may be mentioned. The motivation is to further research in
w-pattern avoidance and a generalized methods in enumerating re-
stricted compositions and other formal languages.

1 Introduction

Enumeration (Generating) algorithms have been a subject of study since
the foundations of Computer Science first developed with the work of P.A.

1

MacMahon [1854-1929] and Axel Thue [1863-1922] in combinatorics, number
theory and mathematical logic [3]. In the past decade research has grown
further in interest with applications in modelling computational chemistry,
bioinformatics, to cryptography and error-correcting codes.

In the past ten years enumeration (as in listing or generating) has come
valuable over traditional counting algorithms because the information enu-
meration (listing/generating) algorithms provide are vastly superior and can
represent even models. From the fields of combinatorics being a basic com-
binatorial object, compositions have a long history of being under intense
examination and still many problems sit on some varieties of the problems
with compositions. This is due to their dual nature of having an ordering
and also a quantity or significance which many applications seek or desire.
The motivation I had for producing this survey paper was primarily to give
an overview of the problem and encourage others to further research the
problem. I have a strong interest in the subject of enumeration algorithms
and foundations of Computer Science so I wanted to gain more experience
exploring the literature and how to properly document research. With this
in mind, I myself have interest in conducting more research in these problems
in terms of the research directions I provide later in the paper but are to be
left to the reader as a research direction.

2 Definitions and Concepts

Counting Algorithm - A counting algorithm effectively computes the car-
dinality of a finite set given some properties of the desired construction.
Returns a the intended total size of the intended construction.

Enumeration Algorithm - An enumeration algorithm effectively gener-
ates/lists elements of a finite set given some properties of the desired con-
struction. Enumeration algorithms can also be augmented to solve counting
problems by computing the cardindality of the generated set.

Integer Composition - A composition denoted by Ck,n is a set which con-

tains any sequence σ = σ1σ2 . . . σn where σi ∈ Z+, such that
n∑

i=1

σi = k.

Integer compositions are also referred to as combinatorial compositions.

2

Weak Integer Composition - A weak composition denoted by Ck,n is a
set which contains any sequence σ = σ1σ2 . . . σn where σi ∈ Z+ ∪ {0}, such

that
n∑

i=1

σi = k. Integer compositions are also referred to as combinatorial

compositions.

Parts - Given a sequence σ for a composition Cs,n, the parts of a com-
position is denoted by par(σ) = n.

Order - Given a sequence σ for a composition Cs,n, the order of a com-
position is denoted by ord(σ) = s.

Unrestricted Integer Composition - A composition Cs,n is unrestricted
if and only if for all sequences σ ∈ Cs,n, ord(σ) ∈ Z+.

Unrestricted Weak Integer Composition - A weak composition Cs,n

is unrestricted if and only if for all sequences σ ∈ Cs,n, ord(σ) ∈ Z+ ∪ {0}.

Restricted Integer Composition - A composition CR
s,n is restricted if and

only if for all sequences σ ∈ Cs,n, ord(σ) ∈ R and R ⊆ Z+.

Restricted Weak Integer Composition - A weak composition CR
s,n is re-

stricted if and only if for all sequences σ ∈ Cs,n, ord(σ) ∈ R and R ⊆ Z+∪{0}.

Bounded Integer Composition - A restricted composition CL,U
s,n is bounded

if and only if for all sequences σ ∈ Cs,n given L ≤ U , ord(σ) ∈ R where
R = {r ∈ Z+ ∪ {0}|L ≤ r ≤ U}.

3 Formal Definitions of the Problems

In this paper we will be considering three problems. These problems are in-
volving the generation of unrestricted compositions, bounded compositions,
and restricted compositions. For future reference in this paper, we will refer
to each problem by their numbering here.

Problem 1: Given n, s ∈ Z+ (Note: if s > 0, then n cannot be 0) , ef-

3

fectively generate the unrestricted composition Cs,n using an enumeration
algorithm.

Problem 2: Given n, s ∈ Z+ (Note: if s > 0, then n cannot be 0) and
L,U ∈ Z+ ∪{0} where L ≤ U, effectively generate the bounded composition
CL,U

s,n using an enumeration algorithm.

Problem 3: Given n, s ∈ Z+ ∪{0} (Note: if s > 0, then n cannot be 0) and
an ordered set R where all the element in R are non-negative integers, effec-
tively generate the restricted weak composition CR

s,n using an enumeration
algorithm. This problem will be discussed in future research directions.

4 History of the Problem

The problems of enumerating combinatorial compositions date back as far as
the late 1800’s with the work of P.A. MacMahon and Axel Thue [3]. Before
the days of computers, the two main concerns of compositions were concepts
such as the assemblage of objects under a composition which were the study
of MacMahon, and systematic string rewriting systems primarily by Thue.
Counting for a long time was the main interest of mathematicians, but as
problems grew in complexity researchers found that enumeration through
generation provided a better understanding in some respects to structure [9].
From the later seventies till the late nineties there remained a large gap in the
literature due to a lack of interest in generation algorithms and another rise
of interest in counting algorithms due to the complexities in some counting
problems. The works of Knuth, Lothaire, Ehrlich, Klingsberg, Ruskey and
Stojmenovic vary greatly on the solutions to the problems of unrestricted
compositions [6]. In the later half of the 20th century with the rise of com-
puters, enumeration algorithms became widely popular in research but only
till recently have really come to attention with applications across many sci-
entific disciplines. Compositions like other basic combinatorial objects are a
very important aspect to the foundations of theoretical computer science due
to their relationships with word problems and are an active research problem
in more specific sub-types of compositions.

4

5 Classical Techniques

In this section we will cover three classical techniques which still are used in
practice but are not neccessarily as efficient as the modern results. These
techniques can be found in Combinatorial Algorithms: Theory and Practice
[7]. The focus of this section will be on Problem 1, that is enumeration
algorithms for unrestricted compositions. Often these algorithms would be
implemented along with using a stack, circular list, or data structure which
stores distinct elements efficiently. There is a relationship between this prob-
lem and gray codes and the lower bound of Problem 1 due to it is Ω(k) due
to Reingold’s claims involving loopless algorithms [9, 7]. This lower bound
is well established due to the relationship between Gray Codes and Unre-
stricted Compositions [6, 9].

Brute Force: This technique is pretty straight forward. Recursively con-
catenate integer sequences where the sum is less than s. Once a sequence of
n parts (length n) is reached group them into a data structure for output.
In very small instances this technique is efficient but can grow incredibly
difficult to use in terms of time and space.

Randomization: Utilize the properties of enumerating combinations and
using a disjoint data structure. Keep generating random integer sequences
of length n then insert them into your circular linked list where uniqueness is
required. The algorithm terminates when the size of the list is equal to |Cn,k|.

k-Bit Reflected Gray Code (Bitner-Ehrlich-Reingold Method): This
result gives in the worst case O(1 + k) for only very particular Gray codes
and is a loopless algorithm [7]. This result has been updated in 2003 [9]. The
idea of the algorithm is to utilize the exhaustion of combinations by concate-
nating bits at the bit level to form integer sequences of a fixed size. Often
a stack is used in implementation. Once the length n of bits are formed,
a single pass is made eliminating elements in the list whose sum are not s
(through pruning).

5

6 Modern Results

We will consider modern results to begin at 1999 following the development
of the ECO Method for enumeration of combinatorial objects. Between the
late 1970’s and the late 1990’s the literature on generation algorithm was
pretty sparse following the developments of Knuth, Lothaire and Reingold
among others. Once the ECO methodology was developed, there was a
growing interest in combinatorial objects once again with the further access
of computational power. In turn many applications from genetics, to digital
transmissions as a standard on the rise so interest in these enumeration al-
gorithms arose once again.

As I mentioned in classical techniques, there is a Ω(k) lower bound on Prob-
lem 1. The algorithms in the classical techniques could not reach that optimal
goal but some results in a related discourse would come very much in handy.

In 2003, Timothy Walsh developed an algorithm which can generate Gray
Codes in O(1) worse-case time for almost all gray codes [9]. What makes
this result different than that the Bitner-Ehrlich-Reingold Method devised
in classical techniques which is also a loopless algorithm which has O(1)
worse case-time (only for the computation of the gray codes), is that the
B.E.R. method only works on very specific Gray Codes which really limits
it’s purposes and in practice would increase the running time. Walsh’s pa-
per establishes that Gray codes can infact be used in a practical manner by
generalizing all the main techniques of representing Gray Codes [9].

Now with this result in hand, Problem 1’s solution is optimal by augmenting
Walsh’s algorithm with the B.E.R. method such that we obtain Θ(k)-worse
case running time, where k = |Cs,n|.

Following this result in 2003, many techniques would follow adapting Walsh’s
algorithm to the ECO method to generate gray codes from the classical tech-
niques we have covered in the previous section. A good example is in 2004,
the work done by Silvia Bacchelli, Elena Barcucci, Elisabetta Grazzini, and
Elisa Pergola on exhaustive generation algorithms for gray code structures
(with a main focus on combinations, permutations, and subsets) [1]. To
remain on topic, in 2007 Antonio Bernini, Elisabetta Grazzini, Elisa Per-
gola, and Renzo Pinzani rediscovered Walsh’s algorithm but in the context

6

of developing Gray Code structures which in turn offer more of the classical
options for Problem 1 to be applied once more [2]. Lastly, in 2008 Walsh’s
technique was extended by Toufik Mansour, and Ghalib Nassar by improving
the hamming distance of Knuth’s and Ruskey’s Gray Codes [5].

In 2006, a brief parallel solution for Problem 1 was found to run in O(C(m,n)
log m + k) that uses the combination enumeration technique, where m is the
number of processors, C(m,n) is m choose n, n is the number of parts, and k
is the number of elements in that unrestricted composition [8].

With Problem 1 having an optimal solution now, some researchers in theo-
retical computer science and combinatorics became interested in generalizing
particular types of restricted compositions. The idea was that in some cases
one would not want all the listings but only a subset of them which contained
very specific elements over a continuum. Say if one were analyzing a statis-
tical set of data or only wanted a genomic sequence of 4 symbols instead
of exhausting out numerous which don’t even have 4 symbols [6, 3]. These
would fall under Problem 2 which involve bounded compositions. It is trivial
to see that one could apply similar techniques to the same problem but more
checking would need to occur for which elements belong in the list or not
which can be very costly if the sequences are long. In most instances, you
would also be wasting a significant amount of space storing the computation
in contrast to the actual solution so researchers tried looking for new tech-
niques. Some would look at bounded compositions from only the upper end,
modifying the values of U and fixing L=0, or L=1 [6].

Previous to Walsh’s result Clark Kimberling developed a technique for count-
ing compositions using Pascal’s Triangle and Fibonnaci numbers. The result
allows one to form paths in the interiors of Pascal’s triangle off of off diago-
nals that run up recursively in the triangle to the top to obtain the different
partitions of the composition. That is, just permuting the elements after
obtaining each off diagonal sum (these off diagonals are infact compositions)
could be combined with rows above them if a sum is not met. Kimberling did
not intend this for generating but the counting method stuck. This result by
Kimberling was discovered in 2002 [4]. Not till 2010 did someone make use
of this technique to realise it could be used for generation aswell. Ends up a
solution for Problem 2 derived from this technique by J.D. Opdyke through
his RICs algorithm for generating bounded integer compositions [6].

7

Opdyke’s solution recursively will traverse Pascal’s triangle entries and then
add it to a previous row if a sum was not met (much like you would see
in a Fibonnaci sequence in essence). The running time of the algorithm is
not tightly bounded because there does not exist yet a counting closed form
for bounded compositions according to Kimberling [6, 4]. The running time
given in the paper is ∼ O(s) per composition so this form essentially has
complexity O(kR) where R is the number of bounded compositions [6]. This
is the most general solution from these class of problems but it inheritely
still contains flaws which are address in the paper [6]. This is a solution to
Problem 2.

7 Issues in Algorithms for Modern Results in

Sequential Algorithms

The issues I would like to discuss are with the current solution for Problem 2.
The solution we currently have does not cover the entire domain of possible
choices for symbols in the non negative integer sequences. That is, the RICs
algorithm has several flaws compared to the solution for Problem 1 which
could maybe be improved. The concept of bounded compositions that are
doubly bounded like what someone may consider for Problem 3 may just be
an algorithm which can’t be loop-free sequentially.

Firstmost, unlike the solution to the first solution, this algorithm uses loops
and recursion which can add a heavy cost in computation for large instances
of the bounded compositions but is quite efficient for small instances. Sec-
ondly, the domain of potential values for L and U are not covered in the RICs
algorithm. L or U cannot be 0 in Opdyke’s algorithm because the algorithm
is defined where weak integer compositions are not allowed (the element 0 is
forbidden in non-weak integer compositions) [6]. Often some sources will rule
out the weak compositions because their complexities due to the empty cases,
yet being the general case [3]. More research may be required to understand
the trade-offs between increasing the complexity of compositions and their
algorithmic structure in theory.

8

8 Future Research Directions

Pattern Avoidance: Currently there is a strong interest in pattern avoid-
ance in strings. To begin let us define what pattern avoidance is in terms of
enumeration because counting results are different. A w−pattern avoidance
on compositions or words is where we wish to generate a type of composi-
tion which avoids patterns which is a potential w in the non-negative inte-
ger sequences found in the composition C [3]. In contrast than traditional
conventions, unlike looking for frequencies of common subsequences over a
composition, this is the opposite.

There exist some results currently present in the literature over subsets of this
problem. Over subsequent patterns of length three, Mansour and Vainshtein
first developed a method called the block decomposition method for enumer-
ation [3]. Combinatorists share a strong interest in counting these number
of avoidances but they are rather difficult to enumerate so enumeration al-
gorithms may be an approach to take with these problems where generating
functions may not be found. Generating compositions which avoid particular
strings can have evident applications where we wish to eliminate particular
subsequences from a listing. I would suspect such would be of interest for
applications for particular constructions in coding theory, or statistical anal-
ysis of strings of data.

Optimization of Problem 2: It is evident that we have not obtained
the optimal solution for Problem 2, or if there exists a tighter lower bound
for bounded compositions. The run-time we have currently for this algorithm
from Opdyke is ∼ O(s) per composition, where s is the order [6]. That could
be proving a tighter lower-bound or finding a better upper bound for this
problem. The goal would be an even further improved version of Opdyke’s
RICs enumeration algorithm.

Problem 3 and further Generalization: This problem in itself has a
strong relationship with the decision problem of positive integer Subset-Sum
except where we consider target t = s where s is the order of the weak com-
position. Essentially Problem 3 is the answer to all possible solutions for such
a query of non-negative integer solutions (for weak compositions). Subset-
Sum is an NP-complete problem. The primary difference is that we do not
acknowledge the concept of maximizing t but only keeping sequences which

9

sum to t so it is not exactly the NP-complete problem but it is suspected to
have many intractable properties that can be explored.

It would be of great interest in many applications to produce a purely gen-
eralized method for handling any restricted weak composition generation
request. This may be constructing the algorithm or extending the algorithm
to produce equivalent requests or generalizing the problem even further. It
is expected not to obtain optimal times with such a solution but a feasible
usable solution that solves the problem.

This could be even extending or meshing this with pattern avoidance per
symbol. That is, each symbol contains a restricted set R much like Problem
3 states for an entire sequence.

Compositions and Partitions: J.D. Opdyke concludes his paper with
suggesting more research be done into the counting properties between re-
stricted partitions and restricted compositions through enumeration. In
Opdyke’s paper he finds an interrelationship between the algorithmic prop-
erties between partitions and compositions so it merits some research into an
algorithmic link between the two objects further [6].

9 Conclusions

Based on the current research found in the problems beyond the ones stated,
there is much to explore in terms of combinatorial algorithms between com-
binatorial objects such as Combinatorial Compositions. I personally found
in gathering research between fields rather difficult due to the language used
in specific fields. Some experts use the term enumeration for counting, while
others use enumeration as a term for generation. I also wanted to cover more
parallel and concurrent solutions but it appeared that the problems out there
currently had more than enough interesting results already found. Since my
primary interest was sequential algorithms, these other types of solutions be-
came less valuable for this survey of the literature. Overall, I wish to conclude
that enumeration algorithms for restricted compositions merit more research
because they have valuable applications as mentioned and have theoretical
significance. I wish the best for any further research on the topic.

10

References

[1] S. Bacchelli, E. Barcucci, E. Grazzini, and E. Pergola. Exhaustive gen-
eration of combinatorial objects by eco. Acta Informatica, (40):585–602,
2004.

[2] A. Bernini, E. Grazzini, E. Pergola, and R. Pinzani. A general exhaustive
generation algorithm for gray structures. Acta Informatica, (44):361–376,
2007.

[3] S. Heubach and T. Mansour. Combinatorics of Compositions and Words.
CRC Press, 2010.

[4] C. Kimberling. Path-counting and fibonacci numbers. Fibonacci Quar-
terly, 40(4):328–338, 2002.

[5] T. Mansour and G. Nassar. Gray codes, loopless algorithm and partitions.
Journal of Mathematical Modelling and Algorithms, (7):291–310, 2008.

[6] J. Opdyke. A unified approach to algorithms generating unrestricted
and restricted integer compositions and integer partitions. Journal of
Mathematical Modelling and Algorithms, 9(1):53–97, 2010.

[7] E. M. Reingold, J. Nievergelt, and N. Deo. Combinatorial Algorithms:
Theory and Practice. Prentice-Hall Inc., 1977.

[8] I. Stojmenovic. Listing combinatorial objects in parallel. The Interna-
tional Journal of Parallel, Emergent and Distributed Systems,, 21(2):127–
146, 2006.

[9] T. Walsh. Generating gray codes in o(1) worse-case time per word. DIS-
CRETE MATHEMATICS AND THEORETICAL COMPUTER SCI-
ENCE, PROCEEDINGS, 2731:73–88, 2003.

11

